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Abstract

In this paper, the Distributed Generalized Self-Consistent homogenization model is used to analyze the stress, strain and free energy
density distributions in particle-reinforced elastomers. This information is crucial to bring out guidelines to understand the mechanism of
deformation in heterogeneous materials such as filled elastomers. An application of the Distributed Generalized Self-Consistent Scheme is
fully analyzed in the case of a tension test for several arrangements of particles inside the elastomer matrix.q 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The motivation for this study was initiated by the interest
of relating the local physico-chemical properties of a filled
elastomer network to its mechanical properties using the
Distributed Generalized Self-Consistent homogenization
model. Moreover, this new approach can predict the rela-
tions between the morphology of a filled elastomer network
(microscopic arrangement of particles), the local mechan-
ical behavior of the constituents and the macroscopic
mechanical behavior. The aim of this note is to provide a
methodology from the observation of the material to its
complete mechanical characterization.

Classical homogenization techniques can only describe
the composition of material with the volume fraction.
Therefore, the information that they can provide is
limited. In order to keep track of the morphology of the
filled elastomer, the Concentration Distribution Function
(CDF) is introduced to model the variation of the local
concentration.

The area of investigation of this paper is limited to elas-
tomer reinforced by non-percolating particles. But, all
concepts that are presented here can be extended to all
types of particle-reinforced composites.

2. Material observations

Material observations are necessary to reveal the organi-
zation of the particles inside the elastomer matrix compo-
site. Now-a-days, the means of observation are still limited
to two-dimensional pictures since three-dimensional
imaging is not yet available. Transmission Electron Micro-
scope (TEM) pictures have a good resolution, but they are
taken on a thin film of the material. The investigation of the
fine structure can be made by Atomic Force Microscopy
(AFM) with the tapping mode and phase contrast directly
on the surface of the specimen. In order to observe a repre-
sentative morphology, the area of observation should be
greater than hundred times the size of the particle.

One of the important information pointed out by these
observations is the notion of local concentration. In Fig. 1,
there are locations where the particles are very close
together, with very little amount of matrix and other places
where a large amount of matrix surrounds some isolated
particles. This means that the local concentration is not
uniformly distributed in the material. In order to account
for this dispersion, the local concentration will be modeled
by a CDF. It is worth noting that a local volume concentra-
tion can range from 0 up to 0.74 even in a composite
containing 0.20, in volume, of nanoparticles of filler.

2.1. Notion of local concentration

In a general formalism, the local concentration defines the
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composition of a composite upon a given “area”. The diffi-
cult point of this concept is to give a clear definition of the
“area” which is representative.

For particle reinforced composites, the local concentra-
tion, c, is related to a composite sphere, and defined as the
ratio of the volume of the particle over the composite sphere
(Fig. 2).

The next step is to build the CDF. As there are no perco-
lating particles, each composite sphere is directly counted to
their corresponding local volume fraction,c:

c� rp

rcs

� �3

�1�

whererp is the radius of the particle andrcs the radius of the
composite sphere.

Percolating structure needs more attention because both
constituents are continuous. They can be considered as two
inter-connected phases. Therefore, their respective propor-
tions are reported at 0 and 1.00 volume fraction of particles,
which means that matrix and percolating particles are mixed
together without any order.

2.2. Introduction of the concentration distribution function

Any particle-reinforced composite material can be
considered as a gathering of composite spheres (Fig. 3).
All composite spheres are counted, on a distribution
graph, at their specific concentration,c. Formally, this
discrete representation is continuously prolongated to a
function. The description of the topology of the composite
is given by a CDF,f [c] (Fig. 4).

The average value of the CDF is by definition the value of
the volume fraction of particles:

fv ;
Z1

0
f�c�c dc �2�

3. Bases of the mechanical modelization

According to the material observation, homogenization
seems to be a good candidate to derive mechanical proper-
ties of this kind of composite. Since the constituents are well
defined, in terms of their local mechanical properties and in
terms of repartition inside the composite, it is possible to
derive the macroscopic properties and local stress, strain
and energy density fields. But some simplifications need
to be done and will be presented next.

The mechanical behavior of the nanoparticles will be
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Fig. 1. Atomic force microscope pictures of an elastomer reinforced by
nanoparticles of silicate [1].

Fig. 2. Definition of the local concentration and generalized self-consistent
scheme.

Fig. 3. Representation of the local concentration distribution in the material.

Fig. 4. Graph of a CDF [1].



considered the same as the bulk material. The mechanical
behavior of the matrix is derived from the behavior of a
single macromolecular chain by a homogenization over
the elastomer network. It is assumed that the interface
between the particles and the matrix cannot be damaged,
which means that the adhesion is perfect.

The next point is to choose the more appropriate homo-
genization scheme. From the AFM observations (Fig. 1), the
particles are surrounded by the continuous matrix. The
Generalized Self-Consistent Scheme [2] (Fig. 3) is a good
candidate to catch the feature of a single continuous consti-
tuent in terms of macroscopic properties and averages of
local strain, stress and free energy density fields. The limita-
tion of this approach is linked to the use of a single-
composite sphere, which concentration is equal to the
macroscopic volume fraction of particles. A further step
has been done by using the Generalized Self-Consistent
Scheme with distribution of local concentration [3–5].
This scheme can model the dispersion of the local concen-
tration by considering a CDF, as defined above.

According to the material observation, the investigated
field is limited to the case of non-mechanically percolating
particles. It means that the organization of particles is not
able to carry load on their own, but there is still a load
transfer from the particles to the matrix.

3.1. Constitutive equations of the particles

The mechanical behavior of the rigid particles is assumed
to be linear elastic and isotropic. The expression of the free
energy density,rcp, has the classical form:

rcp�ep� � Gpep : ep 1
1
2

Kpe
2
pv �3�

wherer is the density of the particles,ep the total strain
tensor,ep its deviatoric part andepv its volume part.Gp is the
shear modulus andKp is the bulk modulus. All these quan-
tities are related to the particles, e.g. the subscript p.

The expression of the stress tensor,sp, is given by:

sp � 2Gpep pp � Kpepv �4�

wherepp is the pressure andsp the deviatoric part of the
stress tensor,sp.

3.2. Constitutive equations of the elastomer network

In an elastomer-like material, the conformation of the
flexible long-chain macromolecules changes continuously,
e.g. Brownian motion. According to statistical thermody-
namics, the number of conformations defines the entropy
of the elastomer, and is modified with the applied stretch.

Due to the stretching limit of a polymer chain, at high
stretch, the statistics of the chain does not follow a Gaussian
distribution of the end-to-end chain vector,r. According to
the work of Kuhn and Gru¨n [6,7], the expression of the
entropy,s, of one freely jointed single chain, made ofN
elementary links of lengthb, is:

Ds� 2kN
r

Nb
b 1 ln

b

sinh�b�
� �� �

�5�

whereb � L21�r =Nb� is the solution of:

r
Nb
� coth�b�2

1
b
� L�b� �6�

with L representing Langevin’s function. k is Boltzmann’s
constant,r the end-to-end chain vector,r0 � b

���
N
p

; the aver-
age end-to-end distance of the undeformed chain.

Whenr # �Nb=3�; the expression of the entropy (Eq. (5))
reduces to:

Ds� 2
3
2

k
r2

Nb2 � 2
3
2

k
r2

r2
0

�7�

The tension on a single chain ofN elementary links with the
end-to-end chain vector,r, is obtained by the derivation of
the entropy,Ds, with respect tor.

At the network level the model of Voigt [8], uniform
(constant) strain across all chains in the elastomer, is applied
to compute the free energy density. This means that the
displacement of the cross-linking points is proportional to
the macroscopic displacement. It is also assumed that the
entropy of the network is equal to the sum of the entropy of
the individual chains.

Under tension, the load,f, displacement relation of a
network ofn chains per unit volume, each withN elemen-
tary links, is given by:

f � nkT
N1=2

3
L21 lt

N1=2

� �
2

1
l3=2

t
L21 1

N1=2l1=2
t

� �� �
�8�

wherel t is the simple extension ratio in tension andT the
absolute temperature.

The first-order approximation of expression in Eq. (8)
corresponds to the Gaussian approach (Fig. 5) which gives:

f � nkT lt 2
1
l2

t

� �
�9�

The tension curves are shown on Fig. 5 for Gaussian and
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Fig. 5. Load displacement graph of a network of chains for different values
of number of links,N.



non-Gaussian behaviors with different values of elementary
links, N.

For multi-axial loading condition, in isovolume deforma-
tion conditions,l1l2l3 � 1; of a network of non-Gaussian
chains, the entropic elasticity of this network gives an
expression of the free energy density,rc s:

rcs�l� ; 2kTs�l� � 2kT�s�l1�1 s�l2�1 s�l3��

� 2kT s�l1�1 s�l1�1 s
1

l1l2

� �� �
�10�

wherel i are the principal values of the isovolume stretch
tensor of the network,l . It is worth noting that, the isovo-
lume condition leads to an expression of the free energy
density, rc s, which is only function of two of them,
which are chosen to bel1 and l2. The second equality
corresponds to the fact that both free energy density and
entropy density are state functions, which means that their
expression is not path dependent.

It leads to:

rcs�l� � nkT
N 1=2

3
l1b1 1 ln

b

sinh�b1�
� ��

1 l2b2

1 ln
b2

sinh�b2�
� �

1l3b3 1 ln
b3

sinh�b3�
� ��

�11�

whereb i is the solution of the inverse Langevin’s function
(Eq. (6)) for their respectivel i.

This latter expression can be reduced to a Gaussian beha-
vior with the following expression for the free energy
density:

rcs�l� � nkT l 2
1 1 l2

2 1
1

l2
1l

2
2

2 3

 !
�12�

The internal energy density contribution gives the hydro-
static part of the free energy density,rc v:

rcv�ev� � 1
2 Ke 2

v �13�

whereK is the bulk modulus ande v the volume strain.
By combining the two parts of the free energy density, the

constitutive equation of the matrix can be derived. The
expression of the nominal (engineering or Piola-Kirchoff
2) stress tensor,s , is obtained by the derivation of the
total free energy density,rc , with respect to the total
strain,e :

s � r
2�cs 1 cv�

2e
� r

2c

2e
�14�

wherel � 1 1 e:
By applying Eq. (14) to Eqs. (11) and (13), the com-

ponents of the real stress tensor (Cauchy),s1 ands2 are

given by:

s1 � nkT l 2
1 2

1
l2

1l
2
2

 !
Q1�l1;l2�

s2 � nkT l2
2 2

1
l2

1l
2
2

 !
Q2�l1;l2�

�15�

which can be approximated, as suggested by Bueche and
Halpin [9,10], by:

s1 � nkT l2
1 2

1
l2

1l
2
2

 !
1 2 l2

lim

l2
1 2 l2

lim

s2 � nkT l2
2 2

1
l2

1l
2
2

 !
1 2 l2

lim

l2
2 2 l2

lim

�16�

to account for the limit average stretch of the polymer chain
network,l lim, and the pressure,p, has the classical expres-
sion:

p� Kev �17�

A first-order approximation of the stress relations (Eq.
(15)) gives the expression of the Gaussian relations:

s1 � nkT l2
1 2

1
l2

1l
2
2

 !
s2 � nkT l2

2 2
1

l2
1l

2
2

 !
�18�

In small strain conditions, e.g.e , 50% for a filled elas-
tomer, the macroscopic behavior is supposed to be isotropic
and remain isotropic during the loading, because there is no
strong reorganization of the topology of the particles.

The difficulties in modeling the behavior of reinforced
elastomer with homogenization are first related to the non-
linear elasticity of the elastomer and secondly correlated to
finite transformations, e.g. geometrically non-linear.

Non-linear behavior of the elastomer composite is
equivalent to the linear behavior of a comparison composite,
e.g. tangent or secant moduli [11–13]. For metals, other
authors [14–16] have proposed different equivalent values
of the strain or stress for the evaluation of the evolution law
of the plastic deformation. But in general, from a technical
point of view, they are all leading to the definition of a non-
local constitutive equation [17] of the material.

For elastomers, the elastic part of the behavior is non-
linear. In this study, the choice of the equivalent value of the
stretch tensor,leq, is taken equal to the average value in the
matrix of each composite sphere:

leq�
��������������������

1
Vm

Z
Vm

l1m dV

s ��������������������
1

Vm

Z
Vm

l2m dV

s
1

Vm

Z
Vm

l3m dV

 !21

�19�
Nevertheless, another possibility mentioned by Ponte
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Castaneda [18] is based upon the second invariant:

leq� 1
Vm

Z
Vm

�������������
1
2
lm : lm

r
dV

� 1
Vm

Z
Vm

�������������������������������������������������������������
1
6
��l1m 2 l2m� 2 1 �l1m 2 l3m�2 1 �l2m 2 l3m�2�

r
dV

� 1
Vm

Z
Vm

������������������������������������������������������������
1
6
��e1m 2 e2m� 2 1 �e1m 2 e3m�2 1 �e2m 2 e3m�2�

r
dV

�20�
wherelm is the isovolume stretch tensor of the matrix, and
l1m, l2m, l3m their principal values, andem is the isovolume
strain tensor of the matrix, ande1m, e2m, e3m their principal
values.

3.3. Homogenization procedure

The objectives of this subsection are to recall the bases of
the homogenization technique [19] and to introduce the
distributed homogenization scheme.

Eshelby’s formulas are useful results in elasticity theory
in the heterogeneous material analysis [20,21]. The formu-
las that he derived reduce the usual integrations of elastic

energy to a particular type of surface integration. For the
self-consistent approach with the distribution of local
concentration,Ø[c], the energy equivalence relationship is
reduced to:

Z1

0

1
2

Z
Sc

�T·u0 2 T0·u� ds
� �

Ø�c� dc� 0 �21�

whereS c is the surface of the composite sphere of local
concentrationc, T0 andu0 are, respectively, the stress and
displacement acting on the homogeneous medium, andT
and u are, respectively, the stress and displacement at the
same point in the medium containing the inclusion (Fig. 6).

Many authors have used this expression to estimate effec-
tive moduli of the equivalent homogeneous medium (see for
e.g. Refs. [22–25]). But only in some particular cases, exact
solutions for the effective moduli can be obtained (see for
e.g. Refs. [2,26–29]) otherwise it is possible to derive
bounds of the effective moduli [3,8,30–32], and in some
specific cases non-linear behavior [33,34]. The next para-
graph will present an overview of the concept of equivalent
homogeneity [35] and its implications on the mechanical
analysis.

In practice, there is scale at which all materials are hetero-
geneous. The heterogeneity can occur, either as a continu-
ous variation of properties with position or as an abrupt
change in properties across interface. According to TEM
or AFM observations, in this work, only the latter case
will be considered, and the field of investigation is reduced
to homogenization of spherical inclusions. Furthermore, the
Representative Elementary Volume,VREV, over which the
properties are averaged, is of a dimension much larger than
a characteristic volume,Vcs (Fig. 7), e.g. the volume of a
composite sphere. Consequently, at the representative level,
the material is idealized as being homogeneous.

The topology of the particles in the elastomer is dictated
by the condition of mixing and the affinity of the particles to
form aggregates. The consequence resulting from the
processing stage is that the nanostructure of the reinforced
elastomer can be controlled. But the macroscopic mechan-
ical behavior of the reinforced elastomer is different. In
order to have some ideas on that behavior, it is necessary
to introduce the information on the topology of the particles
in the elastomer. In this approach, the topology will be
characterized by the local concentration (Figs. 2 and 3).

The treatment is based upon the Generalized Self-Consis-
tent Scheme [2] with consideration of the CDF. The solu-
tions of a single composite sphere made of two layers are
now applied to a gathering of composite spheres [36]. Each
composite sphere is defined by its local concentration, and
its occurrence in the material is described through a CDF.
The derivation of the strain and stress fields follow the
expressions given by Christensen and Lo [2]. The only
difference corresponds to the application of the energy
equivalence because of the presence of a distribution of
composite spheres with different local concentration.
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Fig. 6. Equivalent inclusion modelization applied to the generalized self-
consistent scheme with the introduction of local concentration.

Fig. 7. Concept of characteristic length and length scale.



In this more general case, the energy condition (Eq. (21))
is integrated over all composite spheres, multiplied by their
respective weight in terms of their occurrence in the mate-
rial, e.g. with the CDF.

4. Analyses of the results

Typical values of the behavior of the elastomer and the
nanoparticles are reported in Table 1. The area of investiga-
tion is limited, at the macroscopic level, to the stress–strain
curves for tension tests, at the local level, to the strain, stress
and free energy density fields.

4.1. Effect of Gaussian and non-Gaussian constitutive
equations of the elastomer matrix

Tension tests has been performed upon coupons for
different volume fractions of particles. The reinforcement
obtained by the addition of particles in the elastomer has
two different origins. The first one is directly related to the
presence of hard spheres in a soft matrix (Fig. 8). The
second one, which is manifested with a non-Gaussian beha-
vior of the elastomer matrix, is due to increase of stiffness of
the matrix, as the load of the matrix increases (Fig. 9).

The graphs shown in Fig. 9 deal with a composite system
containing a mean volume fraction of particles equal to
0.30, with the CDF given in Fig. 10. In order to respect
the close packing of monodispersed size of spheres, e.g.
0.64, the value of the CDF has been taken equal to zero
for all concentration upon this limit. The result of the
computation using a Gaussian constitutive equation for the
pure elastomer (curve (a) in Fig. 9), whereas the curve (b) of
Fig. 9 is obtained from Langevin’s constitutive equation. It

is worth noting that there is a significant increase of the
stress (100%) at a strain of 40%. When the volume fraction
of the particles increases, the effect of the non-Gaussian
behavior of the elastomer occurs at a lower strain (Fig. 8).
The latter remarks are only valid until there is no decohesion
at the interface between the particles and the matrix.

All the results presented in the following paragraphs
correspond to the average value in the matrix of stress, strain
and free energy fields. The stress and strain fields are written
in terms of the intensity factors of the deviatoric and hydro-
static decompositions of their respective tensor. The free
energy field is described by its density, which gives a
good feeling of its unit volume repartition in the matrix,
and a distribution function, which characterizes the amount
of volume in the matrix at the same energy level. In each of
the following figures, figure (a) refers to Gaussian and figure
(b) to non-Gaussian constitutive equation of the elastomer
matrix. Moreover, the “elastic” case refers to linear approx-
imation of the constitutive equation of the matrix, which
physically corresponds to an applied load leading to zero.

The strain intensity factor,e if , is defined as:

e if ;

1
vm

Z
Vm

em dv

e∞ �22�
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Table 1
Value of the moduli of the matrix and nanoparticles

Properties Elastomer Nanoparticles

Young’s modulus (E) 7 MPa 60 GPa
Poisson’s ratio (n) 0.49 0.2
Limit stretch (l lim) 1.5 –

Fig. 8. Effect of the volume fraction of particles on a tension test.

Fig. 9. Simulations of a tension tests on a particle reinforced elastomer
(mean volume fraction of particles,fv � 0:30).

Fig. 10. Representation of the CDF.



whereem is the strain tensor of the elastomer,Vm the part of
the matrix in a given composite sphere, which has a volume,
vm, ande∞ the applied far-field strain tensor.

The profile of the repartition of the volume strain inten-
sity factor (Fig. 11) is rather uniform in both cases. As the
load increases, the mean value of the repartition decreases
and its profile becomes less uniform with the increasing load
for Langevin’s constitutive equation of the elastomer. On
the contrary, its mean value increases with the load for the
Gaussian case.

The shear strain intensity factor is presented in Fig. 12. It is
higher at the higher local concentration of particles for any
load value. Such a profile remains rather constant with increas-
ing load for the Gaussian behavior of the matrix. For the non-
Gaussian regime, the effect of the loading appears completely
different: at high local concentration, there is a quite signifi-
cant decrease of the shear strain intensity factor (10% at
8 MPa), whereas only a slit increase occurs at low local
concentration. Moreover, at a local concentration around the
mean volume fraction, there is no load effect. These results
show gradual shear strain redistribution between the compo-
site spheres of different concentration of particles.

The definition of the stress intensity factor,s if, is given by:

s if ;

1
vm

Z
Vm

sm dv

s∞ �23�

wheresm is the strain tensor of the elastomer ands∞ the
applied far-field stress tensor. The representation of the result
has been divided in the hydrostatic part (pressure) and the
deviatoric part of the stress.

For the two matrix behaviors, the repartition of the pres-
sure intensity factor (Fig. 13) is rather uniform, and
becomes less uniform with increasing load. Similarly to
what is obtained for the volume strain intensity factor,
increasing the load leads to opposite changes of the hydro-
static stress intensity factor between the Gaussian and the
non-Gaussian behavior of the matrix. As regards the shear
stress intensity factor (Fig. 14), there is a great difference
between the two matrix responses. Indeed, for the Gaussian
matrix behavior, the profile with local concentration looks
like the one obtained for the corresponding shear strain
intensity factor, and does not depend on the load. It is
quite different with the non-Gaussian behavior of the
matrix, for which similar profiles are noticed between
shear strain and stress intensity factors, but the effects of
increasing load are completely different. Both for low and
high local concentration, large changes with loading result
(10% at 8 MPa). They occur in opposite directions, with a
fixed point at the local concentration equal to the mean
volume fraction. Consequently, the distribution of the
shear stress intensity factor through the composite spheres
of various concentration becomes wider and wider by
increasing the load.
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Fig. 11. Volume strain intensity factor in the elastomer. Fig. 12. Shear strain intensity factor in the elastomer.



For each value of the local concentration, the free energy
density of the matrix,cm, is defined as

cm ;
1

2vm

Z
Vm

sm : em dv �24�

The free energy density is shown in Fig. 15. It is worth to
point out that the absolute values of the free energy density
at a given stress level cannot be compared between the
Gaussian and the non-Gaussian behaviors of the matrix as
shown in Fig. 9; higher free energy densities are stored in
the Gaussian case, due to the larger strain required to
achieve the same stress. Any way, in both cases, the free
energy density of the matrix is located at high local concen-
tration.

The free energy distribution function is defined as:

Fm�c� ; �1 2 c�f�c�

�
1

2vm�c�
Z
Vm

sm : em dvZ1

0
�1 2 c�f�c� 1

2vm�c�
Z
Vm

sm : em dv
� �

dc

�25�
The free energy distribution (Fig. 16) does not depend at

all on the Gaussian or non-Gaussian character of the

behavior of the elastomer matrix. Indeed, it is directly
controlled by the corresponding CDF, and exactly reflects
its shape. The absolute value of the free energy is higher for
Gaussian than non-Gaussian behavior of the matrix, as a
consequence of what has been described here above for
the free energy density.

4.2. Effect of the concentration distribution function

For the non-Gaussian behavior of the matrix, we investi-
gated the effect of the shape of the CDF on either the macro-
scopic stress–strain relation, or the local strain, stress and
free energy fields. For a volume fraction equal to 0.30, we
have looked at the various CDFs shown in Fig. 17, in addi-
tion to the previous one (Fig. 10). Each CDF is labeled from
1 to 4.

Tension tests have been performed by using the four differ-
ent CDFs. The results shown in Fig. 18 in terms of the stress–
strain curves are the same. This result is rather surprising
because the self-consistent approach accounts for the strain
(or stress) coupling between the different composite spheres
through the equivalent homogeneous surrounding material.

From a practical point of view, only the volume fraction
of particles is the relevant parameter, which means that the
tension curve can be derived by using a standard model, e.g.
Generalized Self-Consistent [2], extended to non-linear
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Fig. 13. Hydrostatic stress (pressure) intensity factor in the elastomer. Fig. 14. Deviatoric stress (shear) intensity factor in the elastomer.



behavior. Nevertheless, this approach gives finer informa-
tion on the different fields acting in the heterogeneous
material, which can be exploited to study molecular
mechanisms. Other investigations on different non-
percolating morphologies of particles lead to the same
conclusion. It is interesting to look at the influence of differ-
ent CDFs on the local fields. For example, the shear strain
intensity factor (Fig. 19) increases slightly when the CDF is
getting wider. Similarly, the free energy density (Fig. 20) is
quite independent of the arrangement of particles in the

elastomer matrix and seems to be directly dictated by the
load level (8 MPa).

5. Conclusion

The previous sections have shown that the Distributed
Generalized Self-Consistent model is able to derive macro-
scopic stress–strain relation for any loading condition, and
also to bring out the local stress, strain and energy density
fields in a heterogeneous material. The advantage of this
model is the quick answer and the simplicity of use. At
this stage, with this analytic approach, it is only possible
to study the behavior under the hypothesis of small strains,
e.g. up toe , 50%:

This limitation is first due to large transformation, which
changes the shape of the composite sphere to a composite
ellipsoid. Secondly, the treatment of the non-linear beha-
vior, and especially the introduction of the composite of
comparison cannot yet be analytically solved. For a classical
constitutive equation, e.g. local constitutive equation, some
authors [37] have gone through Finite Element simulations,
but these computations are time consuming because the
non-linear behavior is step by step updated. Furthermore,
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Fig. 15. Free energy density of the elastomer.

Fig. 16. Free energy distribution function of the elastomer.

Fig. 17. Set of CDFs.

Fig. 18. Tension test for different CDFs.



to account for the local concentration, e.g. the Concentration
Distribution Function, Finite Element approach does not
appear to be a good candidate, because it will cost more
computer time and, moreover, the solution might not be
unique. To overcome this difficulty, in this work, the beha-
vior of the elastomer has been considered as non-local,
which means that it depends upon the average of strain
field of the matrix of each composite sphere. As a conse-
quence, the matrix of each composite sphere can follow its
own history.

The principal results have been obtained by considering a
tension test. They have shown that the local fields (strain or
stress) depend quite significantly on the local concentration
of particles, meaning that the response of the composite
material is heterogeneous.

The effect of the stress load level depends on the consid-
ered local field. A major influence is observed between a
Gaussian and a non-Gaussian character of the constitutive
equation of the elastomer matrix. In most cases, the compo-
site spheres of high concentration show the higher sensitiv-
ity. This latter result is a direct consequence of the higher
strain of the matrix in these concentrated regions. Surpris-
ingly, the shape of the local concentration distribution does

not change qualitatively the results, and quantitatively the
effects are quite minor.
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